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SELF-LUBRICATING COATINGS FOR HIGH-TEMPERATURE APPLICATIONS

Harold E. Sliney

SUMMARY

Solid lubricants with maximum temperature capabilities of about Ii00 °C

are known. Unfortunately, none of the solid lubricants with the highest tem-

perature capabilities are effective below about 400 °C. However, research at

Lewis shows that silver and stable fluorides such as calcium and barium fluo-

rides act synergistically to provide lubrication from below room temperature

to about 900 =C. This paper describes plasma-sprayed composite coatings that

contain these solid lubricants in combination with a metal-bonded chromium car-

bide. The lubricants control friction, and the carbide matrix provides wear

resistance. Successful tests of these coatings as backup lubricants for com-

pliant gas bearings in turbomachinery and as self-lubricating cylinder liners

in a four-cylinder Stirling engine are discussed.

INTRODUCTION

Some present-day aeropropulsion systems already impose severe demands on

the thermal and oxidative stability of lubricant, bearing, and seal materials.

These demands will be much more severe for systems planned to be operational

around the turn of the century. The complex gas turbine engines in modern

aircraft contain many variable geometry components with load-bearing surfaces

that must be self-lubricating at high temperatures and gas pressures. In

hypersonic aircraft of the future, the propulsion systems will also incorporate

variable-angle air inlet ramps that will need seal surfaces with the ability

to slide with low friction and wear at very high temperatures. In addition,

the airframe control surface bearings may see high temperatures and certainly

will need to be protected by sliding-contact control surface seals that will

be the first line of defense against the temperatures generated by aerodynamic
heating at hypersonic velocities.

Conventional solid lubricants such as graphite and molybdenum disulfide

(MoS 2) are a class of materials with a layer lattice crystal structure which

is ideal for providing the low shear strength associated with low friction.

However, these lubricants have very limited high-temperature oxidation resist-

ance. Both graphite and MoS 2 oxidize in air well below 500 °C. Therefore,

it is necessary to creatively screen other classes of candidate materials for

chemical and physical properties that are likely to afford the necessary combi-

nation of chemical stability and lubricity.

A class of materials that possess this combination of properties consists

of the fluorides of the alkali metals, especially lithium fluoride (LiF), and

the fluorides of the alkaline earth metals, especially barium fluoride (BaF2)
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and calcium fluoride (CaF2). These compounds are lubricious above their

brittle-to-ductile transition temperatures (typically about 500 °C) to just

below their melting points, which are LiF, 870 °C; BaF 2, 1280 °C; and CaF2,

1410 °C. Unfortunately, these compounds do not lubricate below their brittle-

to-ductile transition temperatures. However, our research shows that a combi-

nation of silver (Ag), which is lubricious as a thin film below 500 °C, with

the BaF2/CaF 2 eutectic acts synergistically to provide lubrication from below

room temperature to 900 °C (ref. i).

This paper describes plasma-sprayed composite coatings that contain these
solid lubricants in combination with a Nichrome matrix or with a metal-bonded

chromium carbide. Successful tests of these coatings as seal material, as

backup lubricants for compliant gas bearings in turbomachinery, and as self-

lubricating cylinder liners in a four-cylinder Stirling engine are discussed.

MATERIAL PROPERTIES CONSIDERATIONS

There is clearly a need for high-temperature lubricants in many advanced

terrestrial and aerospace applications where the high temperature often pre-

cludes the use of conventional liquid lubrication. Figure i lists examples

of some of these application areas and the associated bearing and seal

temperatures.

Conventional solid lubricants such as molybdenum disulfide (MoS 2) and

graphite have limited high-temperature capability because they oxidize in

air at temperatures below 500 =C. The effect of oxidation on the friction

coefficient of MoS 2 is illustrated in figure 2. The sharp rise in the fric-

tion coefficient of molybdenum disulfide as the temperature is increased above

about 350 =C is caused by oxidation of the solid lubricant to solid molybdenum

trioxide and gaseous sulfur oxides. It is therefore clear that a primary cri-

terion for the survivability of high-temperature materials is thermochemical

stability. Some physical properties of importance involve the hardness and

ductility or plasticity of the candidate material. Properties that effective

solid lubricants have in common are the following: (i) they are soft,

(2) they have a high degree of plasticity (the plasticity must be associated

with a low yield strength in shear for lubricity), and (3) they must exhibit

adequate adhesion to the lubricated surfaces. (Obviously, no matter how

desirable the other properties of a solid are, that material cannot lubricate

if it is not retained at the sliding interface.)

We have used calcium fluoride, barium fluoride, and silver as solid

lubricants in our high-temperature coatings. They satisfy all of the above

criteria over specific ranges of temperatures. Thermochemlcal calculations

indicate that these materials should be chemically stable to high temperatures

in air or in hydrogen, and this has been experimentally verified. The

hardness-temperature characteristics of these two fluorides and of metallic

silver are given in figure 3(a) from reference 2. Silver is very soft at room

temperature with a hardness of about 30 kg/mm 2, and this continuously decreases

to about 4 kg/mm 2 at 800 °C. Thin films of silver lubricate quite well at

temperatures up to about 500 °C, but appear to have inadequate film strength

to support a load at higher temperatures. The fluoridesj on the other hand,

are considerably harder than silver at the lower temperatures, but their hard-

ness drops off rapidly with temperature, and at about A00 "C, their hardness

is 30 kg/mm 2 or less. Also, brittle-to-ductile transition temperatures, at
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high strain rates, of 300 to 400 *C have been reported for these fluorides

(refs. 3 to 5). Since fluoride coatings have been shown to become lubricious

at about 400 °C, but ineffective as lubricants at lower temperatures (ref. I),

there is an apparent correlation of hardness-temperature characteristics and

of the brittle-to-ductile transition temperature with the friction-temperature

characteristics.

Because silver films are lubricative at the lower temperatures and the

fluorides discussed are lubricative at higher temperatures than silver, it is

reasonable that a composite coating containing silver and the fluorides might

be lubricious over a wide temperature range, and this has been demonstrated

repeatedly in our research (refs. I and 6). Figure 3(b) from reference I

illustrates this point. The friction-temperature characteristics of

0.02-mm-thick, fused fluoride coatings with and without silver, which were pre-

pared by a process similar to porcelain enameling, are compared. The all-

fluoride coatings were lubricous only above about 400 °C, while the coatings

that also contained silver lubricated from room temperature to 900 *C. These

results with relatively thin coatings led to research with plasma-sprayed

coatings.

PLASMA-SPRAYED COATINGS

Researchers at Lewis have reported two series of plasma-sprayed coatings

containing fluoride solid lubricant: the PSIO0 and the PS200 series (refs. 6

and 7). The first series contains stable fluorides and silver with a Nichrome

binder; the second series contains the same lubricants and chromium carbide

with a nickel-cobalt alloy binder. The proportions of the components can be

varied to optimize the coatings for various uses. In general, the PSI00

series, which is softer, has been useful in applications where a slightly com-

pliant, but nongalling coating is needed. The friction and wear properties of

PSIO0 and PSIOI are illustrated in figure 4. The PSIO0 composition, which con-

tained calcium fluoride as the only lubricant, lubricated above about 400 °C,

but not at lower temperatures. The transition from high to low friction and

wear corresponded to the brittle-to-ductile transition temperature of calcium

fluoride at high shear rates. The addition of silver as the second lubricant

in PSI01 resulted in a coating with good lubricating properties from -60 to

900 =C. The Nichrome-based coatings exhibited moderate ductility. This

property and their good lubricating properties have led to their application

in high-temperature, lightly loaded shaft seals. An example of this type of

application is the shaft seal shown in figure 5 from reference 8. Wear coeffi-

cients k for the PSI00 series of coatings are on the order of 10-5 mm3/Nm,

and the friction coefficient is typically 0.2.

When more wear-resistant coatings are needed, the PS200 series is

preferable. The PS200 concept is summarized in figure 6. As the sketch indi-

cates, the coating is a composite material with the lubricating solids distri-

buted throughout a very wear-resistant chromium carbide/nickel alloy matrix.

The solid lubricant content can be optimized for a particular set of operating

conditions. A typical composition consists of 10 wt _ each of silver and

calcium fluoride/barium fluoride eutectic in the metal-bonded chromium carbide

matrix. Results of friction and wear tests and applications of this coating

are given in the following section. Wear coefficients are about one-tenth

those of PSI00.
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APPLICATION TESTS OF PS200 GAS BEARINGS

Figure 7 is a gas bearing journal coated with PS200 and finished by

diamond grinding. Start-stop tests of this journal in a foil bearing were

conducted by using the test apparatus shown in figure 8 and reported in refer-

ences 9 and I0. Torque profiles during start-stop cycles show that the highest

torque occurs at the beginning and end of each cycle when the surface velocity

is below the critical lift-off velocity for the bearing and the journal is in

sliding contact with the bearing foils. Foil bearings with PS200 coated jour-

nals have routinely survived durability tests consisting of 9000 starts and

stops (18 000 rubs) at preprogrammed bearing temperatures from 25 to 650 °C,

and have not failed in long duration life tests of up to 30 000 start/stop

cycles. Therefore, the bearing life is determined by the number of start/stop

cycles it can survive before the lubricant coating fails or excessive foil

wear occurs.

Typical wear data for Inconel X-750 bearing foils are given in figure 9.

Data are compared for foils run against a journal coated with PS200 and one

coated with metal-bonded chromium carbide with no solid lubricant additions.

The foils run against the unmodified coating were worn excessively after 3000

start/stop cycles, while those run against PS200 easily survived a specified

9000 start/stops. The initial run-in wear rate against PS200 levels off to a

very low steady-state value, thus providing much longer bearing life than

could be predicted by a linear extrapolation of the wear rate during run-in.

STIRLING ENGINE CYLINDER LINER

PS200 was evaluated as a cylinder liner coating for an automobile

Stirling engine. This was part of the DOE/NASA Automotive Stirling Engine

Project. The lubrication of the piston ring/cyllnder contacts in the Stifling

engine is a challenging high-temperature tribological problem. Metal tempera-

tures are as high as 600 to i000 °C near the top of the cylinder walls. The

working fluid in the engine thermodynamic cycle is hydrogen. The lubricant

coating, therefore, must not only provide low friction and wear, but also must

be thermochemically stable in a strongly reducing hydrogen atmosphere. Fric-

tion measurement, employing a pin-on-disk wear test machine, showed that a

cobalt alloy, Stellite 6B, is a good counterface material in sliding contact

with PS200. The friction coefficients for 6B on PS200 in helium and in hydro-

gen are summarized in figure I0. Friction coefficients were typically 0.2 in

hydrogen from room temperature to 760 °C and considerably lower than measured

for a baseline chromium carbide coating with no solid lubricant additions.

In current designs of the Stirling engine, the piston rings are made of

reinforced polytetrafluoroethylene (PTFE). They are located in ring grooves

near the bottom of the piston where the temperatures are relatively low and

do not degrade the PTFE. This arrangement results in a long, annular gap from

the top of the piston to the piston ring. This gap, known as the appendix

gap, is the source of parasitic energy losses (ref. ii). It therefore would

be desirable to minimize the appendix gap by locating the top ring in a groove

near the top of the piston. A schematic of the ring locations in the baseline

piston and in a piston with an added Stellite 6B hot ring are shown in

figure II.
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A four-cylinder automotive Stifling engine was used in an engine test

reported in reference 12 (fig. 12). The cylinders were bored out to allow for

a PS200 coating thickness of 0.25 mm (O.OlO in), and the pistons were modified

to accept the hot piston rings. The coatings were sprayed on the cylinder

walls to a thickness of about 0.35 mm (0.015 in), then were diamond ground to

a final thickness of 0.25 man. Engine tests were run at 700 °C heater head

temperature and 5, 10, and 15 MPa mean operating pressures over a range of

operating speeds. Tests were run both with the hot rings in place and without

them to provide a baseline for comparison. At some operating conditions, effi-

ciency as indicated by specific fuel consumption increased up to 7 percent

compared to the baseline engine. Under other conditions, no significant diff-

erences in efficiency were measured. The overall average indicated about a

3-percent increase in efficiency with the hot rings over the baseline configu-

ration. This increase was over and above the friction loss introduced by the

hot rings. Seal leakage measurements showed a significant reduction in leak-

age with the hot ring in place. In addition, cylinder wall temperature meas-

urements indicated less cylinder heating in the appendix gap area between the

lower piston rings and the hot ring. Approximately 22 hr of ring-on-coating

operation was recorded. After the initial break-in period, ring and coating

wear were low. Although this application test involved an automobile engine,

the results of this program are relevant to sliding contact seals and bearings

in aeropropulsion systems. The results are especially relevant to the

hydrogen-fueled engine being considered for hypersonic aircraft of the future.

CONCLUDING REMARKS

This paper reviews some of the tribological research at NASA Lewis

Research Center that is relevant to the lubrication of high-temperature aero-

propulsion sliding contact bearings and seals with solid lubricants. The most

significant conclusions are

I. Certain materials properties can be used to establish a qualitative

model for predicting whether or not a chemical element or compound is likely

to have solid lubrication capability within a given temperature range. The re-

quired properties are plasticity, low yield strength in shear, low hardness,

and thermochemical stability at the temperatures and in the environment of
interest.

2. For solid materials that lubricate only at elevated temperatures, the

onset of lubrication appears to correlate with their brittle-to-ductile transi-

tion temperatures.

3. Some combinations of two or more solid lubricants, each with different

temperature capabilities, can be incorporated into composites with a broader

temperature capability than that of any single solid lubricant.

A recently developed coating employing this concept is PS200. This is a

plasma-sprayed composite coating in which silver and barium fluoride/calcium

fluoride eutectic are dispersed throughout a matrix of metal-bonded chromium

carbide. Silver alone is lubricative to about 500 °C, while the fluorides are

lubricative from 400 to 900 °C. The combination in this coating lubricates

from room temperature to 900 °C.
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CURRENT AND FUTURE NEEDS

FOR HIGH-TEMPERATURE SOLID LUBRICANTS

TEMPERATURE,
oC
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• ROTARY ENGINES FOR GENERALAVIATION
APEX SEALS

• ADIABATIC DIESEL CYLINDER LINERS

• STIRLING ENGINES
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REGENERATORWEAR FACE SEALS

FOIL BEARINGS(MAIN SHAFT)
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Figure I. - Applications for high-temperature solid lubricants.
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lubrication with molybdenum disulfide.
Figure 2. - Effect of oxidation on

85



4OO

200

100
MICRO-

HARDNESS, 00
4O

Hv,
kg/mm2 20

10
8
6
4

.8

.6

FRICTION
COEFFICIENT .4

.2

__ o CaF2"_SINGLE
o BaF2_CRYSTALS

(a)
I I I "_ j

UNLUBRICATED
-- ------ BaF21CaF2EUTECTICCOATING

0 EUTECTICCOATINGWITH 35 wl % AgADDITIVE

200 400 600 800
I

0 1000 CD-8_28708

TEMPERATURE, °C

(a) Microhardness.

(b) Friction coefficient.

Figure 3. - Effect of temperature on microhardness and friction coefficients
of coating materials.
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Figure 5. -
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Compressor/turbine shaft seal operates at 650 °C.
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Figure 6. - The concept of PS200 - a plasma-sprayed composite solid lubricant

coating.
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Figure 7. - Gas bearing journal coated with PS200 and finished by diamond
grinding.

Figure 8. - Foll bearing under test at 700 °C.
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Figure 9. - Wear profiles of preoxidized Inconel X-750 foil bearings run

against journals lubricated with plasma-sprayed chromium carbide or PS200.
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Figure I0. - Bonded chromium carbide and PS200 in Stifling engine atmospheres.
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Stirling engine hot piston ring tests.
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Figure 12. - Results of hot piston ring tests.
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